首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5098篇
  免费   346篇
  国内免费   83篇
  2023年   32篇
  2022年   38篇
  2021年   58篇
  2020年   110篇
  2019年   156篇
  2018年   182篇
  2017年   106篇
  2016年   97篇
  2015年   97篇
  2014年   240篇
  2013年   263篇
  2012年   179篇
  2011年   189篇
  2010年   110篇
  2009年   134篇
  2008年   176篇
  2007年   225篇
  2006年   172篇
  2005年   174篇
  2004年   106篇
  2003年   104篇
  2002年   87篇
  2001年   61篇
  2000年   51篇
  1999年   50篇
  1998年   53篇
  1997年   45篇
  1996年   35篇
  1995年   33篇
  1994年   41篇
  1993年   45篇
  1992年   39篇
  1991年   35篇
  1990年   37篇
  1989年   41篇
  1988年   28篇
  1987年   34篇
  1985年   129篇
  1984年   260篇
  1983年   207篇
  1982年   257篇
  1981年   246篇
  1980年   165篇
  1979年   159篇
  1978年   132篇
  1977年   106篇
  1976年   62篇
  1975年   42篇
  1974年   34篇
  1973年   28篇
排序方式: 共有5527条查询结果,搜索用时 0 毫秒
91.
The function of the extrinsic 23 kDa protein of Photosystem II (PSII) was studied with respect to Mn binding and its ability to supply Mn to PSII during photoactivation, i.e. the light-dependent assembly of the tetramanganese cluster. The extrinsic proteins and the Mn cluster were removed by TRIS treatment from PSII-enriched membrane fragments and purified by anion exchange chromatography. Room temperature EPR spectra of the purified 23 kDa protein demonstrated the presence of Mn. Photoactivation was successful with low Mn concentrations when the 23 kDa protein was present, while in its absence a higher Mn concentration was needed to reach the same level of oxygen evolution activity. In addition, the rate of photoactivation was significantly accelerated in the presence of the 23 kDa protein. It is proposed that the 23 kDa protein plays an important role in providing Mn during the process of PSII assembly and that it acquires Mn during the light-induced turnover of D1 in the PSII damage-repair cycle and delivers Mn to repaired PSII.  相似文献   
92.
We have developed a novel α-helical peptide antibiotic termed NK-2. It efficiently kills bacteria, but not human cells, by membrane destruction. This selectivity could be attributed to the different membrane lipid compositions of the target cells. To understand the mechanisms of selectivity and membrane destruction, we investigated the influence of NK-2 on the supramolecular aggregate structure, the phase transition behavior, the acyl chain fluidity, and the surface charges of phospholipids representative for the bacterial and the human cell cytoplasmic membranes. The cationic NK-2 binds to anionic phosphatidylglycerol liposomes, causing a thinning of the membrane and an increase in the phase transition temperature. However, this interaction is not solely of electrostatic but also of hydrophobic nature, indicated by an overcompensation of the Zeta potential. Whereas NK-2 has no effect on phosphatidylcholine liposomes, it enhances the fluidity of phosphatidylethanolamine acyl chains and lowers the phase transition enthalpy of the gel to liquid cristalline transition. The most dramatic effect, however, was observed for the lamellar/inverted hexagonal transition of phosphatidylethanolamine which was reduced by more than 10 °C. Thus, NK-2 promotes a negative membrane curvature which can lead to the collapse of the phosphatidylethanolamine-rich bacterial cytoplasmic membrane.  相似文献   
93.
In this paper, the N-terminus of glycoprotein-41, the HIV-1 fusion peptide, was studied by molecular dynamics simulations in an explicit sodium dodecyl sulfate micelle. The simulation provides a detailed picture of the equilibrium structure and peptide stability as it interacts with the micelle. The equilibrium location of the peptide shows the peptide at the surface of the micelle with hydrophobic residues interacting with the micelle's core. At equilibrium, the peptide adopts an alpha-helical structure from residues 5-16 and a type-1 beta-turn from 17-20 with the other residues exhibiting more flexible conformations. The primary hydrophobic interactions with the micelle are from the leucine and phenylalanine residues (Leu-7, Phe-8, Leu-9, Phe-11, Leu-12) while the alanine and glycine residues (Ala-1, Gly-3, Gly-5, Ala-6, Gly-10, Gly-13, Ala-14, Ala-15, Gly-16, Gly-10, Ala-21) interact favorably with water molecules. The results suggest that Phe-8, part of the highly conserved FLG motif of the fusion peptide, plays a key role in the interaction of the peptide with membranes. Our simulations corroborate experimental investigations of the fusion peptide in SDS micelles, providing a high-resolution picture that explains the experimental findings.  相似文献   
94.
栀子提取物ZG对单纯疱疹病毒1型细胞吸附的影响   总被引:6,自引:1,他引:5  
采用负染技术,借助高倍电子显微镜观察栀子提取物ZG作用后,病毒颗粒及其病毒吸附蛋白(virus attach-ment protein,VAP)的变化,考察药物是否直接改变或破坏病毒包膜蛋白的结构,使其失去感染性;采用异硫氰酸荧光素(fluorescein isothiocyanate,FITC)标记病毒,以肝素钠为参照,借助冷却慢扫描电荷耦合器件荧光成象技术,用Aquacomos软件进行图象分析,以探讨栀子提取物ZG不同加药方式对HSV-1吸附量的影响。结果表明栀子提取物ZG对HSV-1包膜表面的VAP无直接破坏作用,不影响病毒对Hep-2细胞的感染性;先加入肝素钠再进行病毒吸附及肝素钠病毒同时加入培养细胞这两种用药方式可明显减少细胞表面病毒的吸附量;栀子提取物ZG各种不同加药方式均能阻止HSV-1对Hep-2细胞表面的吸附,使病毒吸附量减少。  相似文献   
95.
Antimicrobial peptides encompass a number of different classes, including those that are rich in a particular amino acid. An important subset are peptides rich in Arg and Trp residues, such as indolicidin and tritrpticin, that have broad and potent antimicrobial activity. The importance of these two amino acids for antimicrobial activity was highlighted through the screening of a complete combinatorial library of hexapeptides. These residues possess some crucial chemical properties that make them suitable components of antimicrobial peptides. Trp has a distinct preference for the interfacial region of lipid bilayers, while Arg residues endow the peptides with cationic charges and hydrogen bonding properties necessary for interaction with the abundant anionic components of bacterial membranes. In combination, these two residues are capable of participating in cation-π interactions, thereby facilitating enhanced peptide-membrane interactions. Trp sidechains are also implicated in peptide and protein folding in aqueous solution, where they contribute by maintaining native and nonnative hydrophobic contacts. This has been observed for the antimicrobial peptide from human lactoferrin, possibly restraining the peptide structure in a suitable conformation to interact with the bacterial membrane. These unique properties make the Arg- and Trp-rich antimicrobial peptides highly active even at very short peptide lengths. Moreover, they lead to structures for membrane-mimetic bound peptides that go far beyond regular α-helices and β-sheet structures. In this review, the structures of a number of different Trp- and Arg-rich antimicrobial peptides are examined and some of the major mechanistic studies are presented.  相似文献   
96.
Aurein 1.2 is an antimicrobial and anticancer peptide isolated from an Australian frog. To improve our understanding of the mechanism of action, two series of peptides were designed. The first series includes the N-terminal membrane anchor of bacterial glucose-specific enzyme IIA, aurein 1.2, and a newly identified aurein 1.2 analog from human LL-37 (LLAA). The order of antibacterial activity is LLAA > aurein 1.2 >> the membrane anchor (inactive). The structure of LLAA in detergent micelles was determined by 1H NMR spectroscopy, including structural refinement by natural abundance 13Cα, 13Cβ, and 15N chemical shifts. The hydrophobic surface area of the 3D structure is related to the retention time of the peptide on a reverse-phase HPLC column. The higher activity of LLAA compared to aurein 1.2 was attributed to additional cationic residues that enhance the membrane perturbation potential. The second peptide series was created by changing the C-terminal phenylalanine (F13) of aurein 1.2 to either phenylglycine or tryptophan. A closer or further location of the aromatic rings to the peptide backbone in the mutants relative to F13 is proposed to cause a drop in activity. Phenylglycine with unique chemical shifts may be a useful NMR probe for structure-activity relationship studies of antimicrobial peptides. To facilitate potential future use for NMR studies, random-coil chemical shifts for phenylglycine (X) were measured using the synthetic peptide GGXGG. Aromatic rings of phenylalanines in all the peptides penetrated 2-5 Å below the lipid head group and are essential for membrane targeting as illustrated by intermolecular peptide-lipid NOE patterns.  相似文献   
97.
海藻酸钠明胶协同固定化的研究   总被引:3,自引:0,他引:3  
目的:研究不同因素对固定化微胶囊的影响以及不同物质向微胶囊扩散的规律。方法:采用海藻酸钠与明胶协同固定化制备微胶囊,考察了海藻酸钠、明胶浓度等因子对微胶囊直径与机械强度的影响,以及牛血清蛋白与葡萄糖向微胶囊扩散的状况,并利用非稳态传递模型计算了这两种物质在微胶囊中的有效扩散系数。结果:随着海藻酸钠质量浓度的升高,微胶囊的直径与机械强度逐渐增大。制备的最优条件是CaCl2浓度为10%,滴定速度为180滴/min,最优浸泡时间为30min。在此条件下,葡萄糖与牛血清蛋白的有效扩散系数分别为4.63×10-5cm2/min、1.01×10-7cm2/min。结论:海藻酸钠明胶协同固定化制备的微胶囊作为一种生物载体,非常适合细胞或酶的固定化。  相似文献   
98.
Nitric oxide (NO) is a small, ubiquitous molecule, whose physiological function in plants has recently been widely investigated. It seems that one of its pivotal properties is the antioxidant capacity, enabling plants to alleviate the effects of the oxidized stress. In this work we investigated the role of NO in soybean (Glycine max L. Cv. Navico) cell suspension treated with cadmium. Sodium nitroprusside (SNP), nitric oxide donor, markedly decreased the negative influence of Cd2+ on cell growth. It was also found to stimulate superoxide dismutase (SOD, EC 1.15.1.1). Using specific fluorochromes — dihydroethidine (DHE) and 2′,7′- dichlorofluorescein (DCFH-DA) it was shown that NO was very effective in reducing the level of superoxide anion (O 2 ·− ) and hydrogen peroxide, respectively. Furthermore, as evaluated by means of NO specific fluorochrome 4,5-diaminofluorescein diacetate (DAF-2DA), increased production of NO was found in Cd-treated cells. In cadmium-stressed cells SNP lowered the level of oxidized proteins. Our results suggest that the antioxidant properties of nitric oxide in Cd-treated soybean cells rely mainly on its ability to direct scavenging of ROS and stimulation of the antioxidant system.  相似文献   
99.
Recent studies have indicated that macrophage migration inhibitory factor (MIF) and Toll-like receptor (TLR) play an important role in the regulation of innate immune responses. In this study, we investigated the effect of MIF on the expression of TLR4, a receptor that recognizes lipopolysaccharide, in colon using MIF-deficient mice. TLR4 mRNA expression in the colon tissues was determined by northern blot analysis. Western blot analysis and immunohistochemistry in the colon tissues were performed to evaluate the expression of TLR4 protein. The expressions of TLR4 mRNA and protein were remarkably down-regulated in colon tissues of MIF-deficient mice compared with wild-type mice and up-regulated by treatment with recombinant MIF. Immunohistochemical study revealed the presence of TLR4–positive staining in mononuclear cells in the lamina propria and intraepithelial mononuclear cells as well as weak staining in epithelial cells and crypts in colon tissues of wild-type mice. In contrast, MIF-deficient mice did not show TLR4-positive staining in the colonic mucosa. In MIF-deficient mice injected with recombinant mouse MIF (rMIF), TLR4-positive staining cells were observed in colon tissues similar to the findings in wild-type mice. Administration of dextran sulfate sodium (DSS) up-regulated the expression of TLR4 in the colons of WT mice but not in those of MIF-deficient mice. Furthermore, pretreatment with rMIF up-regulated the expression of TLR4 in response to DSS in MIF-deficient mice. Our results suggest that MIF affects the expression of TLR4 in mouse colon under both normal and colitic conditions.An erratum to this article can be found at  相似文献   
100.

Background

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators.

Methods

We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists.

Results

The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain.

Conclusion

We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo.

General significance

This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号